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ABSTRACT

This paper proposes three new attacks. Our �rst attack is based on the RSA key

equation ed − kφ(N) = 1 where φ(N) = pr−1(p − 1)(q − 1). Let q < p < 2q and

2p
3r+2
r+1

∣∣∣p r−1
r+1 − q

r−1
r+1

∣∣∣ < 1
6
Nγ with d = Nδ. If δ < 1−γ

2
we shows that k

d
can be recov-

ered among the convergents of the continued fractions expansions of e

N−2N
r
r+1 +N

r−1
r+1

.

We furthered our analysis on j prime power moduli Ni = pri qi satisfying a variant

of the above mentioned condition. We utilized the LLL algorithm on j prime power

public keys (Ni, ei) with Ni = pri qi and we were able to factorize the j prime power

moduli Ni = pri qi simultaneously in polynomial time.

Keywords: Prime Power, Factorization, LLL algorithm, Simultaneous dio-
phantine approximations, Continued fractions

1. Introduction

Apart from the basic RSA proposal several variants has been proposed in
order to ensure computational e�ciency while maintaining the acceptable level
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of security. One of such important variant is the prime power modulus. In
the prime power the modulus is in the form N = prq for r ≥ 2. As in the
standard RSA cryptosystem, the security of prime power modulus depend on
the di�culty of factoring integers of the form N = prq.

Takagi (1998) proposes a cryptosystem modulus N = prq based on the
RSA cryptosystem. He chooses an appropriate modulus N = prq which resists
two of the fastest factoring algorithms, namely the number �eld sieve and the
elliptic curve method. Applying the fast decryption algorithm modulo pr, he
showed that the decryption process of the proposed cryptosystems is faster
than the RSA cryptosystem using Chinese remainder theorem, known as the
Quisquater-Couvreur method.

As described in Boneh and Durfee (2000), schemes with modulus of the
form N = prq are more susceptible to attacks that leak bits of p than the orig-
inal RSA-scheme. Using Coppersmith's method for solving univariate modular
equations, they showed that it su�ces to know a fraction of 1

r+1 of the MSBs
of p to factor the modulus.

May (2003) considered RSA-type schemes with modulus N = prq for r ≥ 2,
and presented two new attacks for small secret exponent d. Both approaches
are applications of Coppersmith's method for solving modular univariate poly-
nomial equations. From these new attacks they directly derive partial key
exposure attacks, that is attacks when the secret exponent is not necessarily
small but when a fraction of the secret key bits is known to the attacker.

Asbullah and Ari�n (2015) proved that by taking the term N − (2N2/3 −
N1/3) as a good approximation of φ(N) satisfying the RSA key equation
ed − kφ(N) = 1, one can yield the factorization of the prime power modu-
lus N = prq for r = 2 in polynomial time.

Our contribution, as motivated from the recent result of Asbullah and
Ari�n (2015), De Weger (2002), Nitaj (2011), Nitaj et al. (2014), Nitaj and
Rachidi (2015), Wiener (1990). This paper, proposes three new attacks on the
prime power modulus N = prq. In the �rst attack, we consider an instance
of the prime power modulus N = prq and public of exponent e satisfying the
equation ed − kφ(N) = 1 for some unknown integers φ(N), d,k. Applying
continued fractions we show that k

d can be recovered among the convergents of
the continued fractions expansions of e

N−2N
r
r+1 +N

r−1
r+1

. Hence one can factor

the modulus N = prq in polynomial time.
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The second attack works with j instances (Ni, ei) when there exist integer
d and j integers ki, satisfying eid − kiφ(Ni) = 1. We show that the j moduli
Ni can be factored in polynomial time if N = mini Ni and

d < N δ, ki < Nδ, where δ =
j − βj
(j + 1)

In the third attack we show that the j moduli Ni can be factored in poly-
nomial time, when the j instance (Ni, ei) are such that there exist an integer
k, and j integers di satisfying eidi − kφ(Ni) = 1 with N = mini Ni, mini
ei = Nβ and

di < Nδ, k < N δ, where δ =
βj − γj
(1 + j)

For the second and third attacks we transformed the equations into a simulta-
neous diophantine problem and apply lattice basis reduction techniques to �nd
the parameters (d, ki) or (k, di) which leads to factorization of j moduli Ni in
polynomial time.

The rest of the paper is structured as follows. In section 2, we give a brief
review of basic facts about the continued fractions, previous attacks using good
approximation of φ(N), lattice basis reductions and simultaneous diophantine
approximations with some useful results needed for the attack. In section 3,
4 and 5, we put forward the �rst, second and third attacks. We conclude this
paper in section 6.

2. Preliminaries

We start with de�nitions and an important results concerning the contin-
ued fractions, lattice basis reduction techniques and simultaneous diophantine
equations as will as some useful lemmas needed for the attacks.
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2.1 Continued fractions

De�nition 2.1 (Continued Fractions). The continued fractions of a real num-

ber R is an expression of the form

R = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·
Where a0 ∈ Z and ai ∈ N − 0 for i ≥ 1. The number a0, a1, a2.... are called

the partial quotients. We use the notation R = [a0, a1, a2....]. For i ≥ 1 the

rational risi = [a0, a1, a2, ...] are called the convergents of the continued fraction

expansion of R. If R = a
b is a rational number such that gcd(a, b) = 1, then the

continued fraction expansions is �nite.

Theorem 2.1 (Legendre). Let x = [a0, a1, a2, .......am] be a continued fractions
expansion of x. If X and Y are coprime integers such that∣∣∣∣x− Y

X

∣∣∣∣ < 1

2X2

Then Y = pn and X = qn for some convergent pn
qn

of x with n ≥ 0.

2.2 Lattices

A lattice is a discrete (additive) subgroup of Rn. Equivalently, given m ≤ n
linearly independent vectors b1, ..., bm ∈ Rn, the set

L = L(b1, ..., bm) =

{
m∑
i=1

αibi|αi ∈ Z

}
.

is a lattice. The bi are called basis vectors of L and B = b1, ..., bm is called a
lattice basis for L. Thus, the lattice generated by a basis B is the set of all
integer linear combinations of the basis vectors in B.

The dimension (or rank) of the a lattice, denoted dim(L), is equal to the
number of vectors making up the basis. The dimension of a lattice is equal to
the dimension of the vector subspace spanned by B. A lattice is said to be full
dimensional (or full rank) when dim(L) = n.

A lattice L can be represented by a basis matrix. Given a basis B, a basis
matrix M for the lattice generated by B is the m × n matrix de�ned by the
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rows of the set b1..., bm

M =

 b1...
bm


It is often useful to represent the matrix M by B. A very important notion for
the lattice L is the determinant.

Let L be a lattice generated by the basis B = 〈b1, ..., bm〉. The determinant
of L is de�ned as

det(L) =
√
det(BBT ).

If n = m, we have

det(L) =
√
det(BBT ) = |det(B)| .

Theorem 2.2. Let L be a lattice of dimension ω with a basis v1, ..., vω. The

LLL algorithm produces a reduced basis b1, ...bω satisfying

‖b1‖ ≤ ‖b2‖ ≤ ... ≤ ‖bi‖ ≤ 2
ω(ω−1)

4(ω+1−i) detL
1

ω+1−i

for all 1 ≤ i ≤ ω.

As an application of the LLL algorithm is that it provides a solution to the
simultaneous diophantine approximations problem which is de�ned as follows.
Let α1, ..., αn be n real numbers and ε a real number such that 0 < ε < 1. A
classical theorem of Dirichlet asserts that there exist integers p1, ..., pn and a
positive integer q ≤ ε−n such that

|qαi − pi| < ε for 1 ≤ i ≤ n.

A method to �nd simultaneous diophantine approximations to rational num-
bers was described by Lenstra et al. (1982). In their work, they considered a
lattice with real entries. Below a similar result for a lattice with integer entries.

Theorem 2.3 (Simultaneous Diophantine Approximations). There is a poly-

nomial time algorithm, for given rational numbers α1, ..., αn and 0 < ε < 1, to
compute integers p1, ..., pn and a positive integer q such that

maxi |qαi − pi| < ε and q ≤ 2
n(n−3)

4 .

Proof. See (Nitaj et al., 2014) (In Appendix A).
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Lemma 2.1. Let N = prq be a prime power modulus with q < p < 2q. Then

2−
r
r+1N

1
r+1 < q < N

1
r+1 < p < 2

1
r+1N

1
r+1

Proof. Let N = prq and suppose q < p < 2q. Then multiplying by pr we

get prq < prp < 2prq which implies N < pr+1 < 2N , that is N
1
r+1 <

p < 2
1
r+1N

1
r+1 . Also since N = prq, then q = N

pr which in turn implies

2−
r
r+1N

1
r+1 < q < N

1
r+1 . Hence

2−
r
r+1N

1
r+1 < q < N

1
r+1 < p < 2

1
r+1N

1
r+1

Let N = prq therefore using φ(N) = pr−1(p − 1)(q − 1) we compute the
approximation of φ(N) that is

φ(N) = pr−1(pq − p− q + 1)

= prq − pr − pr−1q + pr−1

= N − (pr + pr−1q − pr−1)

The following result gives an interval for N − φ(N) = pr + pr−1q − pr−1 in
terms of N . it shows that if p ≈ q then

N −
(
(N

1
r+1 )r + (N

1
r+1 )r−1N

1
r+1 − (N

1
r+1 )r−1

)
= N −

(
N

r
r+1 +N

r−1
r+1N

1
r+1 −N

r−1
r+1

)
= N −

(
N

r
r+1 +N

r−1
r+1+

1
r+1 −N

r−1
r+1

)
= N −

(
N

r
r+1 +N

r
r+1 −N

r−1
r+1

)
= N −

(
2N

r
r+1 −N

r−1
r+1

)
Which is a good approximation to φ(N). Also if p ≈ 2q then

N −
(
(2

1
r+1N

1
r+1 )r + (2

1
r+1N

1
r+1 )r−1N

1
r+1 − 2

1
r+1N

1
r+1

)
= N −

(
(2

r
r+1N

r
r+1 ) + (2

r−1
r+1N

r−1
r+1 )N

1
r+1 − 2

1
r+1N

1
r+1

)
= N −

(
2

r
r+1N

r
r+1 + 2

r−1
r+1N

r−1
r+1+

1
r+1 − 2

1
r+1N

1
r+1

)
= N −

(
2

r
r+1N

r
r+1 + 2

r−1
r+1N

r
r+1 − 2

1
r+1N

1
r+1

)
= N −

((
2

r
r+1 + 2

r−1
r+1

)
N

r
r+1 − 2

1
r+1N

1
r+1

)
Which is also a good approximation to φ(N).
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Lemma 2.2. Let N = prq be a prime power modulus with q < p < 2q

and φ(N) = N − (pr + pr−1q − pr−1) then
∣∣∣N − (2N

r
r+1 −N

r−1
r+1 )− φ(N)

∣∣∣ <
2p

3r+2
r+1

∣∣∣p r−1
r+1 − q

r−1
r+1

∣∣∣
Proof. Let N = prq be a prime power modulus and suppose that
φ(N) = pr−1(p−1)(q−1) = prq−pr−pr−1q+pr−1 = N − (pr+pr−1q−pr−1)
Then∣∣∣N − (2N r

r+1 −N
r−1
r+1

)
− φ(N)

∣∣∣
=
∣∣∣N − φ(N)−

(
2N

r
r+1 −N

r−1
r+1

)∣∣∣
=
∣∣∣pr + pr−1q − pr−1 −

(
2N

r
r+1 −N

r−1
r+1

)∣∣∣
=
∣∣∣pr + pr−1q − pr−1 −

(
2 (prq)

r
r+1 − (prq)

r−1
r+1

)∣∣∣
=

∣∣∣∣pr + pr−1q − pr−1 −
(
2p

r2

r+1 q
r
r+1 − p

r2−r
r+1 q

r−1
r+1

)∣∣∣∣
=

∣∣∣∣pr − 2p
r2

r+1 q
r
r+1 − pr−1 + pr−1q + p

r2−r
r+1 q

r−1
r+1

∣∣∣∣
<
∣∣∣p r−1

r+1 − q
r−1
r+1

∣∣∣× p r
r+1

(
p

3
r+1 + p

2
r+1 q

r−1
r+1 − p

r2−2r+1
r+1 q

1
r+1 − p

r2−r
r+1

)
<
∣∣∣p r−1

r+1 − q
r−1
r+1

∣∣∣× p r
r+1

(
p

3
r+1 + p

2
r+1 q

r−1
r+1

)
<
∣∣∣p r−1

r+1 − q
r−1
r+1

∣∣∣× p r
r+1 × 2p2

= 2p
3r+2
r+1

∣∣∣p r−1
r+1 − q

r−1
r+1

∣∣∣
Which terminate the proof.

3. First Attack on Prime Power RSA with

Moduli N = prq

Let (N, e) be a public key satisfying an equation satisfying an equation
ed − kφ(N) = 1 for some unknown integers φ(N), d,k. In this section, we
present a result based on continued fractions and show how to factor the prime
power modulus N = prq

Theorem 3.1. Let N = prq be a prime power modulus with q < p < 2q. Let
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1 < e < φ(N) < N −
(
2N

r
r+1 −N

r−1
r+1

)
and ed − kφ(N) = 1 for unknown

integers (φ(N), d, k). If δ < 1−γ
2 , then∣∣∣∣ e

N − 2N
r
r+1 +N

r−1
r+1

− k

d

∣∣∣∣ < 1

2d2

where γ ∈ (0.75, 0.8).

Proof. We transform the equation ed− kφ(N) = 1 in to

ed− k(pr−1(p− 1)(q − 1)) = 1

ed− k(pr−1(pq − p− q + 1)) = 1

ed− k(pr−1pq − pr−1p− pr−1q + pr−1) = 1

ed− k(prq − pr − pr−1q + pr−1) = 1

ed− k(N − (pr + pr−1q − pr−1)) = 1

ed− k(N − (N − φ(N))) = 1

Since N − φ(N) = pr + pr−1q − pr−1 then

ed− k
(
N − (2N

r
r+1 +N

r−1
r+1 ) + (2N

r
r+1 +N

r−1
r+1 )− (N − φ(N))

)
= 1

ed− k
(
N − 2N

r
r+1 +N

r−1
r+1

)
= 1 + k

(
N − φ(N)− 2N

r
r+1 +N

r−1
r+1

)
Divide by d(N − 2N

r
r+1 +N

r−1
r+1 ) we get∣∣∣∣ e

N − 2N
r
r+1 +N

r−1
r+1

− k

d

∣∣∣∣ = ∣∣∣∣ e

N − 2N
r
r+1 +N

r−1
r+1

− e

φ(N)
+

e

φ(N)
− k

d

∣∣∣∣
≤
∣∣∣∣ e

N − 2N
r
r+1 +N

r−1
r+1

− e

φ(N)

∣∣∣∣+ ∣∣∣∣ e

φ(N)
− k

d

∣∣∣∣
≤

∣∣∣∣∣eφ(N)− e(N − 2N
r
r+1 +N

r−1
r+1 )

φ(N)(N − 2N
r
r+1 +N

r−1
r+1 )

∣∣∣∣∣+
∣∣∣∣ed− kφ(N)

φ(N)d

∣∣∣∣
≤ e

∣∣∣∣∣N − 2N
r
r+1 +N

r−1
r+1 − φ(N)

φ(N)(N − 2N
r
r+1 +N

r−1
r+1 )

∣∣∣∣∣+ 1

φ(N)d

≤

∣∣∣∣∣N − 2N
r
r+1 +N

r−1
r+1 − φ(N)

φ(N)

∣∣∣∣∣+ 1

φ(N)d
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Since 1 < e < φ(N) < N − 2N
r
r+1 + N

r−1
r+1 and ed − kφ(N) = 1. Since

φ(N) > 2
3N with N > 6d, then we have φ(N) > 2

3N > 2
3 × 6d > 4d and by

hypothesis of the theorem 2p
3r+2
r+1

∣∣∣p r−1
r+1 − q

r−1
r+1

∣∣∣ < 1
6N

γ and d = Nδ then

∣∣∣∣∣N − 2N
r
r+1 +N

r−1
r+1 − φ(N)

φ(N)

∣∣∣∣∣+ 1

φ(N)d
<

2p
3r+2
r+1

∣∣∣p r−1
r+1 − q

r−1
r+1

∣∣∣
φ(N)

+
1

φ(N)d

<
1
6N

γ

2
3N

+
1

4d2

<
1

4
Nγ−1 +

1

4
N−2δ

For the Theorem 2.1, to satisfy it is su�ce to shows that if γ − 1 < −2δ then
δ < 1−γ

2 , that is if

1

4
Nγ−1 +

1

4
N−2δ <

1

4
Nγ−1 +

1

4
N−2× 1−γ

2

<
1

4
Nγ−1 +

1

4
Nγ−1

<
1

2d2

Then k
d is among the convergent of the continued fraction expansion of

e

N − 2N
r
r+1 +N

r−1
r+1

Corollary 3.1. Upon obtaining the secret exponent d, then the prime power

modulus N = prq can be factored in polynomial time.

Proof. Observe that from Theorem 3.1, and the equation ed − kφ(N) = 1
we get the relation ed−1

k = φ(N) = pr−1(p − 1)(q − 1). Hence computing

gcd
(
N, ed−1

k

)
gives the prime factored p, which leads to the factorization of

prime power modulus N = prq.

The following algorithm is designed to recover the prime factors for prime
power modulus N = prq in polynomial time.
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Algorithm 1

Input: N = prq, with q < p < 2q and public key (e,N) and Theorem 3.1.
Output: the prime factors p and q.
1: Compute the continued fraction expansion of e

N−2N
r
r+1 +N

r−1
r+1

.

2: For each convergent k
d of e

N−2N
r
r+1 +N

r−1
r+1

, compute ed−1
k

3: Compute pr−1 = gcd
(
N, ed−1

k

)
4: If 1 < pr−1 < N , then q = N

pr

Example 3.1. As an example to illustrate our attack for r = 3, d = 101,
k = 65, let us take for N and e the numbers

N = 41285007620134480207

e = 26568872087051427501

Suppose that N and e satisfy all the condition stated in Theorem 3.1, and

Corollary 3.1, then k
d is one of the convergent of the continued fraction of

e

N−2N
r
r+1 +N

r−1
r+1

. Also the convergent of the continued fraction expansion of

e

N−2N
r
r+1 +N

r−1
r+1

are [
0, 1,

1

2
,
2

3
,
9

14
,
65

101
,
10799

16780
, ...

]
Applying the factorization algorithm with the convergent k

d = 65
101 , we obtain

ed− 1

k
=

(26568872087051427501)(101)− 1

65
= 41283939704495295040

Hence we compute

p =
√
gcd

(
N, ed−1

k

)
=
√
gcd(41285007620134480207, 41283939704495295040) =

82913. Finally for p = 82913 we compute q = N
p3 = 72431, which leads to the

factorization of N .
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4. Second Attack on j Prime Power Moduli

Ni = priqi

For j ≥ 2 and r ≥ 2, let Ni = pri qi, i = 1, ..., j be j moduli. This attack
works upon j instances (Ni, ei) when there exist an integer d and j integers ki,
satisfying eid − kiφ(Ni) = 1. We prove that the j moduli Ni for i = 1, ..., j,
can be factored in polynomial time if N = min Ni and

d < N δ, ki < Nδ, where δ =
j − γj
(j + 1)

Theorem 4.1. For j ≥ 2 and r ≥ 2, let Ni = pri qi, 1 ≤ i ≤ j be j moduli.

Let N = min Ni. Let ei, i = 1, ...., j, be j public exponents. De�ne δ = j−γj
(j+1)

where 0 < γ ≤ 3
4 . Let 1 < ei < φ(Ni) < Ni −∇ where ∇ = 2N

r
r+1 +N

r−1
r+1 . If

there exist an integer d < Nδ and j integers ki < Nδ such that

eid− kiφ(Ni) = 1

for i = 1, ..., j, then one can factor the j prime power moduli N1, ..., Nj in

polynomial time.

Proof. We have
eid− ki(Ni − (Ni − φ(Ni))) = 1

eid− ki(Ni −∇+∇− (Ni − φ(Ni)) = 1

eid− ki(Ni −∇) = 1− ki(Ni − φ(Ni)−∇)∣∣∣∣ ei
Ni −∇

d− ki
∣∣∣∣ = |1− ki(Ni − φ(Ni)−∇)|Ni −∇

(1)

Let N = min Ni, and suppose that ki < Nδ, and |(Ni − φ(Ni)−∇)| <
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2p
3r+2
r+1

i

∣∣∣∣p r−1
r+1

i − q
r−1
r+1

i

∣∣∣∣. Then
|1− ki(Ni − φ(Ni)−∇)|

Ni −∇
≤ |1 + ki(Ni − φ(Ni)−∇)|

N −∇

<
1 +Nδ

(
Ni − (2N

r
r+1 +N

r−1
r+1 )− φ(N)

)
φ(N)

<

1 +Nδ

(
2p

3r+2
r+1

i

∣∣∣∣p r−1
r+1

i − q
r−1
r+1

i

∣∣∣∣)
φ(N)

<
Nδ( 16N

γ)
2
3N

<
1

4
Nδ+γ−1

Plugging in to (1), we get∣∣∣∣ ei
Ni −∇

d− ki
∣∣∣∣ < 1

4
Nδ+γ−1

To show existence of the integer d and integers ki, we let ε = 1
4N

δ+γ−1, with

δ = j−γj
(j+1) . This will give us

Nδεj =

(
1

4

)j
Nδ+δj+γj−j =

(
1

4

)j
Therefore, since

(
1
4

)j
< 2

j(j−3)
4 · 3j for j ≥ 2, we get Nδεj < 2

j(j−3)
4 · 3j . It

follows that since d < Nδ then d < 2
j(j−3)

4 ·3j ·ε−j . Summarizing for i = 1, ...., j,
we have ∣∣∣∣ ei

Ni −∇
d− ki

∣∣∣∣ < ε, d < 2
j(j−3)

4 · 3j · ε−j

The above satis�es the conditions of Theorem 2.3, and we can obtain d and ki
for i = 1, ...., j. Next, from the equation eid− kiφ(Ni) = 1 we will get

eid− 1

ki
= φ(Ni) = pr−1(p− 1)(q − 1)

Finally, by computing pr−1
i = gcd

(
eid−1
ki

, Ni

)
we are able to factorize the j

prime power moduli Ni, ..., Nj .
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Example 4.1. As an illustration to our attack on j moduli, we consider the

following three prime power and three public exponents

N1 = 5245610482183600624272049202675113495636808362511373071

N2 = 2759704453491798939632952241385636766809782832565746933

N3 = 1982561833408590266295317735084327906977909011432726947

e1 = 124578150058638136260361650334267451421573539037116160

e2 = 189222508608287214247437091594433262438107459523793424

e3 = 177782566156085884076446917089214794069346348133984637

We have

N = min(N1, N2, N3)

= 1982561833408590266295317735084327906977909011432726947.

Since j = 3 and r = 3 with γ = 0.75, we get δ = j−γj
(j+1) = 0.1875 and ε =

1
4N

δ+γ−1 = 0.0001010097596. Using Theorem 2.3, with n = j = 3, we obtain

C = [3n+1 · 2
(n+1)(n−4)

4 · ε−n−1] = 389046644000000000

Consider the lattice L spanned by the matrix

M =


1 −[Ce1/(N1 −∇)] −[Ce2/(N2 −∇)] −[Ce3/(N3 −∇)]
0 C 0 0

0 0 C 0

0 0 0 C


By applying the LLL algorithm to L, we obtain reduced basis from following

matrix

K =


−12119124277 −132016987081 −4774584152535 −3499415255994
4447894238266 −14913235108702 1040241488030 2293089452052

−12344528858943 732396467579 9015337697435 −15222622708846
29920299293636 5083100349908 58400924463802 −7079938890808


Next we compute

K·M−1 =


−12119124277 −252171353 −9903953672 −8026896964
4447894238266 92550540982 3634894524297 2945987510425

−12344528858943 −256861508584 10088158114994 −8176189876022
29920299293636 622573230754 24451375469342 19817204120751


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Then from the �rst row we have d = 12119124277, k1 = 252171353, k2 =
9903953672, k3 = 8026896964. Next, by using d and ki for i = 1, 2, 3, de�ne
Si =

eid−1
ki

= φ(Ni) = pr−1(p− 1)(q − 1)

S1 = 5245610482183374682290785093668182713877188704413255144

S2 = 2759704453491660108259154306202060341527530726659055360

S3 = 1982561833408482377907837470407359583816783408205533440

Then, for i = 1, 2, 3 we compute pi =

√
gcd

(
eid−1
ki

, Ni

)
. That is

p1 = 49244752761499, p2 = 41738421927617, p3 = 38281119331291

Finally, we can factor the 3 moduli to obtain

q1 = 43925443427429, q2 = 37953733129141, q3 = 35340513648257

.

5. Third Attack on j Prime Power RSA with

Moduli Ni = priqi

We consider the scenario when j moduli Ni = pri q for j ≥ 2 and r ≥ 2
satisfy j equations eidi− kφ(Ni) = 1 for i = 1, ..., j, and the parameters di and
k, are suitably small.

Theorem 5.1. For j ≥ 2 and r ≥ 2 let Ni = pri qi, 1 ≤ i ≤ k be j moduli with
the same size N . Let ei, i = 1, ..., j, be j public exponents with min ei = Nβ,

0 < β < 1. Let δ = βj−γj
(1+j) where 0 < γ ≤ 3

4 . If there exist an integer k < N δ

and j integers di < N δ such that eidi − kφ(Ni) = 1 for i = 1, ..., j, then one

can factor the j prime power moduli N1, ...Nj in polynomial time.

Proof. For j ≥ 2, and r ≥ 2, let Ni = pri qi, 1 ≤ i ≤ j be j moduli. Then the
equation eidi − kφ(Ni) = 1 can be rewritten as∣∣∣∣Ni −∇ei

k − di
∣∣∣∣ = |1− k(Ni − φ(Ni))−∇|ei

(2)
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LetN = max Ni, and suppose that k < Nδ,min ei = Nβ and |(Ni − φ(Ni)−∇)| <

2p
3r+2
r+1

i

∣∣∣∣p r−1
r+1

i − q
r−1
r+1

i

∣∣∣∣. Then
|1− k(Ni − φ(Ni)−∇)|

ei
≤ |1 + k(Ni − φ(Ni)−∇)|

Nβ

<

1 +Nδ

(
2p

3r+2
r+1

i

∣∣∣∣p r−1
r+1

i − q
r−1
r+1

i

∣∣∣∣)
Nβ

<
Nδ( 16N

γ)

Nβ

<
1

6
Nδ+γ−β

Plugging in to (2), to get∣∣∣∣Ni −∇ei
k − di

∣∣∣∣ < 1

6
Nδ+γ−β

To show existence of the integer k and integers di, we let ε =
1
6N

δ+γ−β , with

δ = βj−γj
(1+j) . This will give us

Nδεj =

(
1

6

)j
Nδ+δj+γj−βj =

(
1

6

)j
Therefore since

(
1
6

)j
< 2

j(j−3)
4 ·3j for j ≥ 2, we get Nδεj < 2

j(j−3)
4 ·3j . It follows

that since k < Nδ then k < 2
j(j−3)

4 · 3j · ε−j . Summarizing for i = 1, ...., j, we
have ∣∣∣∣Ni −∇ei

k − di
∣∣∣∣ < ε, k < 2

j(j−3)
4 · 3j · ε−j

The above satis�es the conditions of Theorem 2.3, and we can obtain k and di
for i = 1, ...., j. Next, from the equation eidi − kφ(Ni) = 1 we get

eidi − 1

k
= φ(Ni) = pr−1

i (pi − 1)(qi − 1)

Finally, by computing pr−1
i =

(
eidi−1
k , Ni

)
we are ableto factorize the j prime

power moduli Ni, ..., Nj .

Example 5.1. As an illustration to our attack on j moduli, we consider the
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following three prime power and three public exponents

N1 = 5245610482172832806579932253813295674523806001827944067

N2 = 2759704453496559510624258721238207637943024725075445661

N3 = 5102916077472569763545373834401695235630054963793474563

e1 = 4834972368487260164629839058964789220780346129889309529

e2 = 2512166055084287840292458641460881111443081320778523525

e3 = 5076479886888939189579571234397642340009946203049043035.

We have

N = max(N1, N2, N3)

= 5245610482172832806579932253813295674523806001827944067.

Also min(e1, e2, e3) = Nβ with β = 0.97588 Since j = 3 and r = 3 with γ = 0.8,
we get δ = βj−γj

(1+j) = 0.1319100000 and ε = 1
6N

δ+γ−β = 0.0006543638783.

Using Theorem 2.3, with n = j = 3, we obtain

C = [3n+1 · 2
(n+1)(n−4)

4 · ε−n−1] = 220890863200000

Consider the lattice L spanned by the matrix

M =


1 −[C(N1 −∇)/e1] −[C(N2 −∇)/e2] −[C(N3 −∇)/e3]
0 C 0 0

0 0 C 0

0 0 0 C


By applying the LLL algorithm to L, we obtain reduced basis from following

matrix

K =


2131123 −882052 −777312 −2331090

−31313998762 −522598890312 78379448128 142981078460

613216935162 −105896263288 −584161169728 795476509540

2749849277163 902212864988 4085707904928 810178335710


Next we compute

K ·M−1 =
2131123 2312121 2341115 2142221

−31313998762 −33973522003 −34399550008 −31477069011
613216935162 665297945423 673640782424 616410313276
2749849277163 2983396200296 3020807992080 2764169345633


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Then from the �rst row we have k = 2131123, d1 = 2312121, d2 = 2341115,
d3 = 2142221. Next, by using di and k for i = 1, 2, 3, de�ne Si =

eidi−1
k =

φ(Ni) = pr−1
i (pi − 1)(qi − 1)

S1 = 5245610482172606864598668455482263303403827312729392080

S2 = 2759704453496420679250460584585540432540059549023877600

S3 = 5102916077472351525294569421531536082740624058321328248

Then for i = 1, 2, 3 we compute pi =
√
gcd

(
eidi−1
k , Ni

)
. That is

p1 = 49244752761481, p2 = 41738421927641, p3 = 48281119331239

Finally, we can factor the 3 moduli to obtain

q1 = 43925443427387, q2 = 37953733129141, q3 = 45340513648277

.

6. Conclusion

This paper proposes three new attacks on the modulus N = prq. For
the �rst attack, we used continued fractions expansions and show that k

d can
be recovered among the convergents of the continued fraction expansion of

e

N−2N
r
r+1 +N

r−1
r+1

. Hence, we can factor the prime power modulus N = prq in

polynomial time. For j ≥ 2 and r ≥ 2, we continued our attacks on j public
keys (Ni, ei) when there exist j relations of the form eid − kiφ(Ni) = 1 or of
the form eidi−kφ(Ni) = 1 where the parameters d, di, k, ki, are suitably small
in terms of the prime factors of the moduli. We applied LLL algorithm in our
approach which enable us to simultaneously factor the j prime power moduli
Ni in polynomial time.
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